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‘ Introduction:

WM;>A large number of properties which are peculiar to symmetric
Markov semigroups stem from the fact that such semigroups can be
analyzed simultaneously by Hilbert space techniques as well as
techniques coming from maximum principle considerations. The
feature of symmetric Markov'semigroups in which this fact {s most
dramatically manifested is the central role played by the
Dirichlet form. In particular, the Dirichlet form is a remarkably
powerful tool with which to compare symmetric Markov semigroups.
The present paper consists of a number of examples which
illustrate this point.’' What we ;;{Y“EZM;;;;I;;”;;h;;;;‘there
exist tight relationships between uniform decay estimates on the
semigroup and certain Sobolev:iike inequalities involving the
Dirichlet form.<:;\

Because of their interest to both analysts and probabilists,
such relationships have been the subject of a good deal of
reserch. So far as we can tell, much of what has been done
here-to-fore, and much of what we will be doing here, has its
origins in the famous paper by J. Nash [N]. More recently, Nash's
theme has been taken up by, among others, E. B. Davies [D] and N.
Th. Varopoulos [V-1] and [V-2]; and, in a sense, much of what we
do here {s simply unify and extend some of the results of these
authors. In particular, we have shown that many of their ideas
apply to the general setting of symmetric Markov semigroups.

Before describing the content of the paper, we briefly set

forth some terminology and notation. Careful definitions can be

found in the main body of the paper.
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Let E be a complete separable metric space, % its Borel

field, and m a (o-finite, positive) Borel measure on E . Let

(ﬁt: t > 0} be a strongly continuous symmetric Markov semigroup

on L2(m) . The semigroup (§t= t > 0} determines a quadratic

form & on L2(m) through the definition

(0.1) g(f.f) = tig 1) - (£.7,.6))

(Here (°+.+) denotes the inner produuct in L2(m) ., and we are
postponing all domain questions to the main body of the paper.)
€(f.g) 1is then defined by polarization. ¢ 1is called the
Dirichlet form associated with the semigroup {?tz t >0} . It is
closed and non-negative, and therefore it determines a
non-negative self adjoint operator A so that E(f.f) =

(f.Af)

One easily sees that P_ = e—tA . and so the semigroup is in

principle determined by {ts Dirichlet form. Our aim here is to
show that at least as far as upper bounds are concerned, this is
also true in practice; the Dirichlet form ¢ provides a
particularlly useful infintessimal description of the semigroup
(ﬁt: t > 0)

Finally., to facilitate the description of our results, we
assume in this introduction that the semigroup (?t: t > 0}
posseses a nice kernel »p(t.x.y).

In section 1) we carefully define the objects introduced

above and spell out their relations to one another.

In section 2) we begin by characterizing the semigroups for
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which one has uniform estimates such as

(0.2) p(t.x.y) < crse?/2

in terms of Dirichlet form inequalities of a type first considered

by J. Nash [N]:

2+4/v 4/v |
2 1 '

and indeed, our method of passing from (0.3) to (0.2) is taken

(0.3) nen < BE(f.£)UEN
directly from the work of Nash. (Our own contrifbution is that
(0.2) and (0.3) are actually equivalent. Several applications
here and elsewhere [K-S] turn on this equivalence.)

Once these basic facts have been established, the rest of
section 2) is devoted to Dirichlet form characterizations -~ again
involving Nash type inequalities -- of cases when p(t.x{y)
decays differently for small times and large times. The
characterizations again have a pleasantly simple form. (Theorem
(2.9) and Corollary (2.12) are the main new results here.) Some
applications of these results are given in section 2), others are
described in section §).

At the end of section 2), we discuss Varopoulos' result [V-2]

characterizing (0.2) when v > 2 1in terms of a Sobolev inequality

2
2v/(v-2)

Together the two characterizations yield the suprising result that

(0.4) ng { B'&(f.f)

(0.3) and {(0.4) are equvalent for v > 2 . However, because (0.2)
and (0.3) are equivalent for all v > O , and because (0.4) either
does not make sense or is not correct for v ¢ 2 , we find it more

natural to characterize decay of p(t.x.y) . as we have

throughout this paper, in terms of Nash type {nequalfties.
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The uniform estimate (0.2) and all the estimates in section
2) are really only on-diagonal estimates for the kernel
p(t.x.y) . Indeed, a simple application of the semigroup law and
Schwarz's inequality yields p(t.x.y) ¢ (p(t.x.x)p(t.y.y))l/2
In section 3) we take up an idea of Davies [D] to obtain

of f-diagonal decay estimates.

Davies' idea i{s to consider the semigroup {?t: t > 0}

defined by
(0.5) Ple(x) = '[P (e7¥6)1(x)
for some nice function ¢ . Clearly this semigroup has a kermnel

p¢(t.x.y) which is just ew(x)p(t.x.y)e-¢(Y) . In general, ?t
will not be symmetric, or even contractive, on L2(m)
Nonetheless., when p(t,x,y) satisfies (0.2), one might still hope
that for some number N(y) and some number C independent of
¥ o,
(0.6) pw(t.x.y) < Ct_vlzetN(¢)
It would follow immediately that
(0.7) plt.x.y) ¢ ce~ P72, (v(y) - v(x) + tN(v))
and one would then vary ¢ to make the exponent as negative as
possible.

Davies worked this strategy out for symmetric Markov
semigroups coming from second order elliptic operators. In this
case, the associated Dirichlet form ¢(f.f) 1is an integral whose

integrand is a quadratic form in the grandient of f . Davies

used the the classical Leibniz rule to, in effect, split the
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multiplication operators e and e off from ?t so that

symmetric semigroup methods could be applied to {?f: t > 0}

Here we develop Davies®' strategy in a general setting,
treating also the non-local case. (That is, the case when
(?t: t > 0} 1is not generated by a differential operator.) We are
able to do this because, under very mild domain assumptions, a
generic Dirichlet form & behaves as {f ¢(f,f) were given by
the integral of a quadratec from in vf. In particular, ¢
satisffies a kind of Leibniz rule. (Of course, there is no "chain
rule” in the non~local setting. and so it is somewhat suprising
that there is a Leibniz rule, even in the absence of any
differentiable structure.) We develop this Leibniz rule at the
beginning of section 3): where we use ideas coming from Fukushima
[F] and Bakry and Emery [B-E]. Even though a good deal of further
input must be supplied to prove our generalization of Davies’
result, i1t is this Leibniz rule which allows us to take apart the
product structure of ﬁt Thus the principle underlying our
generalization i{s really the same as the one which he used.

At the end of section 3) we give a brief example of the
application of our result to a non-local case.

In section 4) we develop analogs of the results of section 2)
in the discrete time case. In places this involves considerable

modification of our earlier arguments. In fact, we do not know

how to extend the results of section 3) to the discrete time case.

Our direct treatment of the discrete time case appears to be both
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new and useful. In a recent paper [V-1], Varopoulos gave a very
interesting application of continuous time decay estimates to
determine the transcience or recurrance of a Markov chain. He was
able to apply continuous time methods to this particular discrete
time problem essentialy because it is a question about Green's
functions. Other probléms. however, seem to require a more direct
approach.

In section 5) we give an assortment of applications and
further illustrations of the results described above. For

example, Theorem (5.20) discusses a discrete-time situation for

which the results of section 4) appear to be essential.




[N

1. Background Material:
Let E be a locally compact separable metric space, denote by
3 = QE the Borel field over E, and let m be a locally finite
measure on E. Given a transition probability function P(t,.,x.,*) on
(E.8), we say that P(t,x,+) is m-symmetric if, for each t > 0, the
measure mc(dxxdy) = P(t,x.dy)m(dx) is symmetric on (ExE,%x%3). VWe
will always be assuming that our transition probability functions
are continuous at O in the sense that P(t,x,+) tends weakly to 5x
as t decreases to 0. Note that 1f’{Pt= t > 0} denotes the
semigroup on B(E) (the space of bounded %-measurable functions on
E into R) associated with P(t,x,*) (i.e. Ptf(x) = If(y)?(t}x.dy)
for t > 0 and f € B(E))., then for all f € Bo(E) (the elements of

B(E) with compact support):

(1.1) Nep_fi < Ul , t>O0and p € [1,2].
Y LP(m) LP(m) e L ]

Thus, for each p € [1,=), {Pt: t > 0} determines a unique strongly
continuous contraction semigroup {?gi t > 0} on Lp(m).

In particular, when p = 2 we write Ft in place of F% and
observe that (it: t > 0} is a strongly continuous semigroup of
self-adjoint contractions. Then the spectral theorem provides a
resolution of the identitiy (EA: A 2 0} by orthognal projections
such that

-At

(1.2) Ft = I e "TdE, .

(0.=)
Clearly. the generator of (ﬁt: t > 0} is -A where A = J AdE

(0.=)

Next define a quadratic form on L2(m) by




(1.3) g(f.f) = I Nd(E\£.£) . f € L2(m).
[0.=)

(We use (f.g) to denote the inner product of f and g |in

L2(m) .} The domain %(&) of & |is defined to be the subspace
of L2(m) where the integral in (1.3) is finite. Since %(1 -
e—kt) increases to A as t decreases to O, another
application of the spectral theorem shows that 8t(f.f)T8(f,f) as

tl0 , where

(1.4) ¢ (£.6) = 5o{(£(v) - £(x))m (dxxdy)
=Ll -F a0
and that
(1.5) ace) = (A2 = ( fel®(m) | $3Be (£.£) < =)
-1/2) is the domain of the square root of A .) The

(Here 9(A

bilinear form & is called the Dirichlet form associated with the

symmetric transition function P(t.x,-) on (E. 3. m).

It is clear from the (1.4) that 8c(|f|.|f|) < & (F.£)

Taking the limit as t tends to zero, it is also clear that &
posseses this same property. What is not so clear, and is in fact
the key to the beautiful Beurling-Deny theory of symmetric Markov
semigroups, is the remarkable fact that this last property of &
essentially characterizes bilinear forms which arise in the way
just described. For a complete exposition of the theory of
Dirichlet forms. the reader is advised to consult M. Fukushima's
monograph [F]. A more cursory treatment of the same subject is

given in [L.D.] starting on page 146.
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Nash-Type Inequalities:

Throughout this section, P(t.x,*) will be a symmetric
transition probability function on (E,%.m). and {Ptt t > 0},

{(P.: t > 0}, {Ex: A 20}, &, and A will denote the associated

objects introduced in section 1). Furthermore, we will use Hf"p

-

to denote the Lp(m)-norm of a function f and llKIlp_'q to denote
sup{HKqu: f € BO(E) with anp = 1} for an operator K defined on
B, (E)

As the first step in his famous article on the fundamental
solution to heat flow equations, J. Nash proved that if a:
RN——amNGRN is a bounded smooth symmetric matrix valued function
which {s bounded uniformly above and below by positive ;ultiples
of the identitity, and i{f p(t,x.y) denotes the non-negative
fundamental solution to the heat equation atu = v+(av)u, then
p(t.x.y) ¢ K/tN/2. (t.x.y) € (O.m)xRNxRN. where K can be chosen to
depend only on N and the lower bound on a(-°).

The proof given below that (2.2) implies (2.3) is taken
essentially directly from Nash's argument.

(2.1) Theorem: Let v € (O0,») and &§ € [0,») be given. If
(2.2) nen2*/v ¢ A[a(f.f) + 5nru§]usu?/”

for some A € (0,»), then there is a B € (0,2) which depends only

. f € L%(m).

on v and A such that

(2.3) BN, S Be®t/e®72, ¢ > 0.

Conversely, if (2.3) holds for some B, then (2.2) holds for an A

depending only on B and v.
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Proof: We first note that it suffices to consider f €
E’D('A_)ﬂLm(m)ﬂLl(m)+ when proving the equivalence of (2.2) and
(2.3). It suffices to consider non-negative functions because
(Fti t > O) preserves non-negativity and &(|f]|.[f]) < &(f.f)
Furthermore, if f € Ll(m)+ and fn = ﬁl/n(fAn). then fn €
2(X)NL” (m)nL (m)*, f —f in L(m). and E(F . £) < &(f.6).

Assume that (2.2) holds., and let f € @(A)NL (m)* with nen, =

1 be given. Set ft = th and u(t) = e-25tﬂftﬂg. Then, by (1.2)

] d _ -25t : 2 2 1+2/0v
and (2.2): - E?u(t) = 2e [g(ft'ft) + auftuz] 2 Au(t) .
where we have used the fact that llftll1 = llfll1 = 1. Hence,
E%[u(t)_z/v] = -(2/v)u(e) 1P u(e) 2 4/vA ¢ and so. u(r) <
(4t/vA)-D/2. From this and the preceding paragraph, it is clear
that 1B 1, o ¢ Ce®%/t?”?, where C depends only on v and A. Next,
since Pt is symmetric, IIF’tII2_w° = HPtH1#2 by duality. Hence,
by the semigroup property ne _n < P H2 < Beét/tv"2

' t 1o t/2 192

where again B depends only on v and A.

To prove the other assertion, assume (2.3). Choose f €

Dom(X)NLY(m)* . and set £, = e’G‘th. Then U NI, < BHle/tD/z and

t
£ = f - I (61 + A)f ds. Hence:

t S
0
t
2 u/2 2 —
BIE I3/t 2 (F.6) = UENy - Jo(f,(ar + K)f_)ds
2 2
2 nENy - t[&(f,f) + aufnz].

where we have used (1.2) to conclude that (f.,(6I + X)fs) < &(f.F)
+ Gang for all s » 0. After segregating all the t-dependent

terms on the right hand side and then minimizing with respect to t

> 0, we conclude that (2.2) holds with an A depending only on v

......................
........................
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and B. Because of the remarks in the first paragraph, the proof
is now complete. Q.E.D.
The estimate (2.3), as it is written, ignores the fact that

since "ﬁt" for all ¢t > 0O, uﬁtn is a decreasing

1-1 $1 10

function of t. However, it is clear that when &6 > 0 , (2.3) is

equivalent to

(2.3") B L. < B /(A2 e 5o,
5

where B' = Be

{(2.4) Remark: The basic example from which the preceding theorem

derives is the one treated by Nash. Namely, let E = RN and set
P°(t.x.dy) = (4vt)-N/2exp[-|y - x|2/4t]dy. Then it is easy to
identify E(Go) for the associated Dirichlet form &° as the
Sobolev space W;(RN) of L2(RN)—£unctions with first derivatives in
L2(RN) and to show that £°(f.f) = Ilvflz(x)dx. In particular,

since it i{s clear from the explicit form of Po(t.x.dy) that

"Ptnlam < (4wt)-N/2 ., We can apply the preceding theorem to
conclude that
(2.5) nen?3 /N ¢ AN[Ilvflz(x)dx]nfu4{N N -

L°(R") L*(R)

On the other hand, and this is the direction in which Nash
argued, an easy application of Fourier analysis establishes (2.5)

for this example:

oMien?, o [ 1Ee) 1% + I IR TCONEIRT:
L ;“ ’2 el IEDR
$ O\R "f“Ll(RN) + (27) 'R lefl (x)dx

for all R > 0, and therefore (2.5) follows upon minimization with

respect to R.




.c »

BS S NS

-12-

Next, suppose that a:RN——ﬁmNGRN is a smooth, symmetric

matrix valued function which satisfies a(¢) 2 al for some a > O.
Then the fundamental solution p(t,x.y) to atu = ve(avu) determines
a symmetric transition probability function P(t,x.dy) = p(t.x.y)dy
on (RN.dx). and the associated Dirichlet form & is given by &(f.f)
= Jvf(x)-a(x)vf(x)dx. ¥hile one now has no closed form expression
for P(t.x.dy). it is clear that &(f.f) > ald®(f.f) . and so from
(2.5). we see that & satisfies (2.2) with A = A,/a. Hence,

N
N/2 '
. where K € (0,») depends on N and a alone.

Obviously, this is the same as saying that p(t.x.y) ¢ K/tN/z.

WP, _ o < K/t
The utility of Theorem 2.1 often lies in the fact that {t

translates a fairly transparent comparison of symmetric Markov

semigroups at the infinitessimal level into information relating

their kernels: clearly this is the case in Nash's original work.
Our next result is métfvated by the following sort of

example. Define p(t,x.y) = vt(y - x) on (O.Q)XRNXRN. where wt(x)

= t N
= 2/wN(t2 ; le2)(N+1)/2 is the Cauchy (or Poisson) kernel for R .

Then it is easy to check (cf. the discussion in section 1)) that
the associated Dirichlet form & is given by &(f.f) =
l/wNIdxfaylyl-N+l(f(x+y) - f(x))z. In addition, by either Theorem
(2.1) or a Fourier argument like the one given in (2.4), one sees
that (2.2) holds with 6§ = 0 and v = N. Next, consider the
Dirichlet form &(f.f) = chxIdnyI-N+1(f(x+y) - £(x))2n(y) . where

c > 0 and n € BO(RN)* is identically equal to 1 in a neighborhood

of the origin and is even. (Note that, by the Levy-Khinchine
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formula, there is, for each t > 0, a unique probability K, on RN

such that ;t(f) = exp[c'tIdylyl-N+l(cos(§-y) - 1)n(y)]. where ¢’ =
2c/(2v)N. Moreover, it is an easy exercise to check that the
convolution semigroup th = ut*£ is symmetric on L2(RN.dy) and
has &€ as its Dirichlet form.) One can exploit translation
invarience by using the Fourier transform to rewrite &(f.f) as

™11 - cos(E-y)Inn)].-

ece.6) = o fag[15e)12[ayly
Note that [&ylyl—N+l(l - cos(f-y))n(y) 1is asymptoticly
proportional to ]El2 for £ small and to |E| for E large. Then
proceeding as in the Fourier analytic derivation of (2.5)., one
sees that there exists a C € (0,») (depending only on N, c, linl_,

and the supports of n and (1 - 1)) such that:

(2.6) nens g c[(n‘zvn‘l)z(f.f) + RNufuf]. R > 0.
From (2.6). we see that if £(f.£) 2 WENZ then ngn?*2/N ¢
C'G(f.f)"f"f/N. where C' depends only on C and N. At the same

time, if &(f.f) ¢ Hf"?. then, by taking R =1 in (2.6), we obtain

wen2 ¢ 2cnen? and therefore that ngn2*2/N c2e) M MugnZuga/N,
Combining these, we arrive at
nend*r2/N ¢ A[:(f.f) + ufug]ufuf’N.

where A depends only on N and C. Applying Theorem (2.1), we

conclude that

(2.7) B, < Bet/tN, ¢ > 0.

Because the He from which the preceding {?t: t > 0} comes is
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nothing but a truncated Cauchy kernel, one expects that (2.7) is
precise for t € (0,1]. However, Central Limit Theorem
considerations suggest that it is a very poor estimate for t 2 1.
In fact, because the associated stochastic process at any time. .t
and for any n € z* is the sum of n independent random variables
having variance approximately proportional to t/n, the Central
Limit Theorem leads one to conjecture that the actual decay for

N/2

large t is Bt The point i{s that too much of the

information in (2.6) was thrown away when we were considering f's
2

for which &(f,f) ¢ "fﬂl. Indeed., from (2.6) we see that
(2.8) Hfﬂ§+4/N < Aa(f.f)ufu‘l*/N when &(f.f) ¢ Hf"%.

The next tﬁeorem addresses the problem of getting decay
information from conditional Nash type inequal:ities like (2.8).

(2.9) Thecerem: Let v € (0,») be given. If

(2.10) nen*4e ¢ age e)nent’? when g(e.6) ¢ nen?
for some A € (0,®) and {f WP 1 < B € (0,), then there is a C €

171
(0,») depending only on v, A, and B such that

3 v/2
(2.11) "Ptulaa { C/t .t 2 1.
Conversely, (2.11) implies that (2.10) holds for some A € (0,®)
depending only on v and C.
Proof: As in the proof of Theorem (2.1), we restrict our

attention to f € ﬁ(x)ﬂLl(m)+ when deriving these relations.

Assume that (2.10) holds and that "?1"1~m { B ., and set T
= B/2. Let .‘D(X)ﬂLl(m)+ with Hf"l = 1 be given and define ft =
P. f, t > 0. Then, by (1.2):

T+e+1""
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_ -2A(T+t+1) = 2 2 _ 2
&(f,.f.) = I Ae d(E\£.£)  (1/2T)UP 05 € WENT = HE Y.
[0.=)
2+4/ 4/
Hence, by (2.10). IIf _Ug v < AE(E £ NE N - AE(f .f ). since

Hftul = 1. Starting from here, the derivation of Hftﬂg 4 C'/tv/2

for some C' depending only on N and A is a re-run of the one given
in the passage from (2.2) to (2.3). One now completes the proof
of (2.11) by first noting that, from the preceding, np

2”C'2/tv/2

T+1+t"1-v°° $

and second that "Ptnlﬂﬂ < Ill’llll_m° ¢ B for t 2 1.
The converse assertion is proved in the same way as we passed

from (2.3) back to (2.2). Q.E.D.

The following statement is an easy corollary of the Theorems
(2.1) and (2.9) and the sort of reasoning used in the discussion
immediately preceding the statement of (2.9).

{2.12) Corollary: Let O < p { v < ® be given. If

/(u+2 /(v+2
(2.13) nen2 ¢ A[[ﬁiﬂ;ﬂl]u (w+2) [iii;il]v (v )]ﬂfﬂ2
2 nfuf ufuf 1

for some A € (0,») and all f € L2(m)\{0}. then there is a B,

depending only on p,v, and A, such that
v/2
n/2

if ¢t € (0,1]

_ B/t
(2.14) up_n f ¢ € [l.e).

t 1o $ B/t

(2.15) Remark: As a consequence of Corollary (2.12), we now have
the following result. Let (?t: t > 0} have Dirichlet form & and
suppose that &(f.f) = Idxf(f(x+y) - f(x))zM(x.dy). where M:

RNXS N —[0.®] has the properties that M(x.-) 1is a locally
R\{0}
N

finite Borel measure on RN\(O) for each x € R, M(-.T') is a
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measurable function for each I' € 3 N ., M(x.-T) = M(x.T'), and
R\{0}

Hj|y|2/(l + |y|2)M(-.dy)Hw = C ¢ », Next, suppose that M(x.dy) 2

n(y)—sz——— for some n € B(IRN)+ and a € (0,2). If n 2 e for some ¢

N+a
lv|
> 0, then by comparison with the Dirichlet form of the symmetric
N/a

stable semigroup of order a , we have "Ftnlaw B/t . t >0,

where B depends only on N, a, e, Inli and C. On the other hand,

again by comparison, if n € BO(RN) and if n 2 € > O on some ball

B(O,r), then u?tu satisfies (2.14) with p = N/2, v = 2N/a.

1
and some B depending only on N, a, e, r, linll,, and supp(n).

We conclude this section with an explanation ofvthe
relationship between Nash inequalities like (2.2) and the more
familiar Sobolev inequalies.

(2.16) Theorem: Let v € (2,2) be given and define p € (2,») by
the equation p = 2v/(v - 2) (i.e. 1/p = 1/2 - 1/v). 1If (2.2)
holds for some choice of A and 6§, then

(2.17) ufuﬁ C AT(E(E.£) + BUENZ)

for some A' € (0,») which depends only on A and v. Conversely,
(2.17) implies (2.2) for some A € (0,2) depending only on A' and
v.

Proof: At least when 6§ = O, Varopoulos proved in [V-2] that
(2.3) with v > 2 is equivalent to (2.17) with p = 2v/(v-2): and
so, since his proof extends easily to the case when 6 > O, Theorem

(2.16) follows directly from Varopoulos’' theorem and Theorem

(2.1).

Q.E.D.
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The passage from (2.17) to (2.2) provided above is, however,

far from being the most direct. If (2.17) holds, then by Holder's

inequality:

nEny < ufn;"znfui'p'/z < A'(E(E.£) + BUEN

where p’ denotes the Holder conjugate of p. The preceding

nfui’P'/z,

2,.p' 72
5)

inequality clearly shows that (2.17) yields (2.2) with A =

(A')4/p.. In view of the crudeness of this argument for going
from (2.17) to (2.2), it should come as no suprise that
Varopoulos's proof that one can go from (2.3) to (2.17) involves
somewhat subtle considerations. In particular, what comes easily
from (2.3) is a weak-type version of (2.17): and one applies

Marcinkiewicz 1nterpolafion to complete the job.




-

AN L

A'.‘- .

a

3

s AR ASD

e T W WLWN

-18-

3. Davies's Method for Obtaining Off Diagnal Estimates:

So far we have discussed the derivation of estimates having
the form “ﬁtuleﬂ ¢ B(t) . When such an estimate obtains of
course, for each t and m-a.e. x , the measure P(t,x.*) must
be absolutely continuous with respect to m , and so the semigroup
(?t: t > 0} posseses a kernel p(t.,x,y) : that is, for m-a.e.

x, we may write P(t.x,dy) = p(t.x.y)m(dy)
In this section we discuss pointwise estimates on the kernel

p(t.x,y) . To do so conveniently, we will suppose that our

semigroup {Ft: t > 0} i{s a Feller semigroup: that is, that each

Pt preserves the space of bounded contiruous functions . Under
this hypothesi{s, whenever "ﬁtuldﬂ ¢ B(t) we have that for every
t and x , P(t,x.dy) = p(t.x.,y)m(dy) ., and p(t.x.*) ¢ B(t)

m-a.e. Then in view of the fact that P(t.x.*) is an m-symmetric
transition probability function, p(t,+*.,%) = p(t,.»*,«) (a.e.,mxm)
for all t > 0 , and p(s+t,x,*) = Ip(s.x.f)p(t.f.*)m(df) =
Jb(s.x.f)p(t.°.§)m(d§) (a.e.,m) for all (t,x) € (0,»)xE . (One
may always delete the Feller condition in what follows if one is
willing to insert extra a.e. conditions.)

We now enquire after the decay of p(t.x.y) as the distance
between x and y 1increases. The results of section 2) do not
address this question. Indeed. under the Feller hypothesis, we
have by the Schwarz inequality and the above that p(t.x.y) ¢
(ple.x.x)) 2 (p(e.y.ynt/?

while an estimate on |IP

for mxm-a.e. (x,y) € ExE . Hence,

ylelds a uniform estimate on

t"l*ﬂ
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p(t,+.,»%) , it is really just an estimate on p(t,+,%) at the
diagonal.

In the introduction we briefly sketched an extremely clever
method E. B. Davies [D] introduced for obtaining off-diagnal
estimates provided the semigroup is generated by a second order
elliptic operator. Our primary goal in this section is to show
how one can generalize Davies' idea and apply it in a more general
non-local setting.

In order to explain what must.be done, consider, for a

moment, a typical situation handled by Davies. Namely, let E = RN

and suppose that ¢&(f.f) = fvf-avfdx . where a:RN——ﬂmNORN is a
smooth, symmetric matrix-valued function, uniformly bounded above
and below by positive multiples of the {dentity; and let (?t Tt
> 0} denote the associated semigroup. Instead of studying the
original semigoup {Pt: t > 0} directly, Davies proceeded by way
of the semigroup {Pt: t > 0} where

(3.1) PYe(x) = e*(x)[Pt(e‘*f)](x) .

and ¢ € C:(RN) . What he showed then is that {if HIP_Hl <

t 11—
v/2

B/t , t > 0, then, for each p > O, there is a Bp € (0.») such

that

np¥n < (Bp/z”’2)exp((1 + )T(¥)2e). & > 0,

t ]—=
where r‘(\p)2 = H]Eaijaiwajwlﬂa . As a consequence, he concluded
*

v/2

that p(c.x.y) € (B,/¢" Z)exp(w(y) - w(x) + (1 + p)r(¥)2c) for all

¥ € C:(RN) and then got his estimate by varying

As we will see shortly. the key to carrying out Davies’
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program {s to obtain the inequality
(3.2) e(e¥e2P7 ! e7V¥g) 3 1/pe(£P.f) - pr(¢)2ufu§g
for smooth non-negative f's and any p € [1,). Although, in the
case under consideration, (3.2) is an easy exercise involving
nothing more than Leibniz's rule and Schwarz's inequality, it is
not immediately clear what replaces (3.2) in the case of more
general Dirichlet forms. In particular, we must find a
satisfactory version of the Leibnitz rule (cf. (3.8) below) and a
suitable quantity to play the role of I'(y)., and we must then show
that a close approximation of (3.2) continues to hold.
(3.3) VWarning: Throughout this section we will be assuming that
for any Dirichlet form ¢ wunder consideration, CSE)HE(&) is
dense in Co(E)

In this section we make frequent use of the fact that (cf.

section 1)) for f.g € (&) .

lim
E(f.g) = & (f.g)
(3.4) ti0 ¢
= Mr_ L Teeiy) - £(x))(g(y) - g(x))m, (dxxdy)
ti0 2¢ t
Set 3 = 9(&)NL"(m). We then have the following lemma, which

is taken, in part, from [F].

(3.5) Lemma: If ¢ is a locally Lipshitz coninuous function on Rl
with ¢(0) = 0, then, for all f € $b. pof € 3b. In particular, 3b
is an algebra. Finally., for all f.,g € $b=

(3.6) M0l fe(0 () - 1) %m (dxxdy) = e(af.f) - 1/28(g. 10

Proof: The proof that yof € 3 comes down to checking that

b
(vof(y) - vof(x))’m (dxxdy) ¢ = :

sup 1
t>0 ¢t
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and since |pof(y) - ¢of(x)| ¢ M|f(y) - £(x)|. where M is the
Lipshitz norm of ¢trange(f), this {s clear. The fact that Sb is
an algebra follows by specialization to ¢(n) = n2 and
polarization. Finally., to prove (3.6), note that
(e(x)f(x) - g(y)f(y))(f(x) - £(¥))
- 1/2(a(x) - gy (£2(x) - £2(y))
= 1/2g(x)(£(x) - £(y))® + 1/28(y)(£(y) - £(x))>:
and therefore, by the symmetry of m , one sees that
Jé(x)(f(y) - £(x))%m (dxxdy) = f(g(x)f(x) - g(y)£(y))m (dxxdy)
- 172[(s(x) - 8 (F2x) - £2(y)Im (xxdy).
After dividing by 2t and letting t!0O, one gets (3.6). Q.E.D.
Given two measures p and v on (E.8), recall that (uu)l/2 is
the measure which i{s absolutely continuous with respect to u + v

1/2. where f and g denote the

and has Radon-Nikodym derivative (fg)
Radon-Nikodym derivatives of p and v, respectively, with respect

to pu + v.

(3.7) Theorem: Given f.g € $b and t > O , define the measure
r(f.g) by

ar(t.8) = [freo -t - se)P(ex.an) m(an).
Then, there is a measure I'(f.f) to which Ft(f.f) tends weakly as
td0 (i.e. jé(x)drt(f.f)——ﬂ g(x)dr(f.f) for each g € Cb(E)) .
and ¢&(f.f) 1is the total mass of TI(f,f) . Furthermore, {f
r(f.g) 1s defined by polarization, then Ft(f.g) tends weakly to
r(f.g) and |I'(f.g)]| ¢ (F(f.f)r(g.g))l/2 , where |o| denotes

the variation measure associated with a signed measure o
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Finally, if f.g.h € 30 . then one has the Leibnitz rule:
(3.8) &(fg.h) = jfdr(g.h) + Iédr(f.h)
Proof: Clearly Ft(f.f)(E)——#G(f.f) as t!0 . Thus we will

know that Ft(f.f) converges weakly as soon as we show that

lim
tio

we have assumed that E(G)HCO(E) is dense in Co(E) . we need

Ié(x)rt(f.f)(dx) exists for each g € CO(E) . In turn. since

only check this for g € (¢)NC_(E) : and for such a g we can
apply (3.6).

Clearly both I (f.g)—T(f.g) and the inequality |[T(f.g)| ¢
(ree.6)r(s.g))'’?
polarization. Finally, to prove (3.8), observe that

(f(x)g(x) - f(y)g(y))(h(x) - h(y)) =
172(g(x) + g(y))(f(x) - £(y))(h(x) - h(y))
+ 172(f(x) + £(y))(s(x) - g(y))(h(x) - h(y)).

Hence, by the symmetry of m.. (3.8) holds with Gt and Tt replacing

follow from the definition of I'(f,g) via

& and T, respectively: and (3.8) follows upon letting tiO. Q.E.D

Clearly we can unambiguocusly extend the definition of & and T
to f.g € 2= {h+c: hegNC(E)andc € R'}. and (3.8) will
continue to hold even though elements of % need not lie in

L2(m) . We now define F_  to be the set of ¥ € ¥ such that

e-2wr(e¢.e¢) << m, e2¢r(e-w.e-¢) <{ m, and

{ o,

-2, ¥ ¥ 29, -y _-¥
r(y) [nde rﬁi € )nmvnde f(e ".e )nw

d dm

]1/2
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9 (3.9) Theorem: Choose and fix ¥ € ¥_. Then, for all f € gt
(3.10) s(e¥r.e7hr) 2 g(.8) - r(w)Zuend.

Moreover, all p € [2,®):
(3.11)  £(e¥£%P7 ! e ¥ey 3 ple(£P.£P) - gpr(¢)2nfu§g.
Proof: By polarizing (3.6), we see that:
g(e¥e2P 7l Vi) 2Pl £y 4 g(e V2P oY) —2je‘*fdr(f2p'1.e¢).

Hence, after applying (3.8) to the second term on the right of the

= &(f

preceding, we obtain:

£(e¥s2P7l o Vg) = g(£2P gy o If2p‘1dr(e'*f.e*)

A I

(3.12) _ _
- Je ¥edr(£2P1, e¥).
Note that

ffzp'ldr(e'¢f.e*) - Ie'*fdr(fzp’l.e*)

(3.13
) - Hefre () 1227 (y) - &g (y) 1207 ()
x[ew(x) - ew(Y)]mt(dxxdy)/2t.
In particular, when p = 1:

der(e’*f.e*) - Ie‘*fdr(f.e*)

- Hnfreoeme™ ) - eVt X)L ¥ gn (axxay)s2e

; = -iigff(x)f(Y)[e—w(Y) - eV grev () ew(y)]mt(dx)‘d”/zc

_lim

. 172
th‘If(x)z[e_w(Y) - e_¢(x)][ew(x) - e¢CY)]mt(dxxdy)/2t]

~

x[jf(y)2[e-¢(y) - e-¢(x)][ew(x) - e¢(Y)]mt(dxxdy)/2t
jfzdr(e'¢,e*).

]1/2
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At the same time,
(3.14) Ire™.e¥)| < r(v)?m,
and so (3.10) now follows from (3.12) with p = 1 and the
preceding.

To prove (3.11) when p 2 2, we re-write the right hand side
of (3.13) as:

1igf[f2p(y) - f2p(x)]e-¢(x)[e¢(x) - ew(Y)]mt(dxxdy)/2t

. tigffzp(x)[e-¢(x) - ey (X)L V() gn (dxxdy)s2e

: He[e2P e - £ 1e* et () - # W gn (axxay) e

§ 2 iigffp(y)[fp(y) - P 1Y) L VD (axxay)s2e

+ HRPeolP () - P01 ) - H I gn (duxdy) 2

_ + Ifzpdf(e'w-e¢) - 2[ffzp—zdf(f,f)]1/2[Ifzpe-zwdr(e¢.e¢)]1/2

. > -e(fp.fp)l’z[[szpe2¢dr(e"*.e‘¢)]l/2 - [jf2pe-2¢dr(e¢'e¢)]1/2]
172

. If2pdr(e'¢.e¢) - 2[Jf2p‘2dr(f.f)]llz[Jf2pe'2*dr(e¢.e¢)]

Using (3.14) together with this last expression, we see that:

szp‘ldr(e‘¢f.e*) - fe‘*fdr(fzp‘2.e¢) > - r(¢)2ufu§g

) 2[8(fp.fp)1/2 + [jfzp‘ldr(f.f)]1/2]r(¢)nfugp.

(3.15)




In order to complete the derivation of (3.11), we need two

more facts. The first of these is that

(3.16) e(£2P7 1 gy » ff2p'2dr(f.f) > iséTa(fzp‘l.f)

and the second is that

(3.17) £(eP. Py 3 £(e?P7 6y » 2RZle(6P ¢P).
P

To prove (3.16), use (3.8) to check that

2p-2 2p-1 2p

£) - 2I£ “24r(f.f).

2p-2

£2) = 28(f

lim
ti0

first part of (3.16) holds. The second part follows from the fact

E(f

and use £(£2P72,¢%) = 1% (¢ .£2) > 0 to conclude that the
that for all x and y , %(fzp-z(y) + f2p-2(x))(f(x) - f(y))2 2
§E’-§-1-(f2"’1(y) - £2P71(2))(f(y) - £(x)) . together with (3.4) and
Lemma (3.5). The proof of (3.17) is equally easy. Namely,

replace & and by Gtand note that
2 2p-1 2p-1
(£P(y) - £P(x)% 2 (FP7 (y) - £°PTI () (£(y) - £(x))
2p-1 2
2 = (fP(y) - £P(x))”.
P
(We do not actually use the second part of (3.16) here, but

because it is interesting that there is a two sided bound, we

include the short proof here. The second part of (3.17) has

appeared already in [L.D.] and [V-2]: only the first part is new.)
Combining (3.12) and (3.15) with (3.16) and (3.17), we now

see that

e(e¥e?P7h e7r) » Z22le(6P P) - 42(¢P.£P)2r(y) - r(w) i
p
of which (3.11) i{s an easy consequence. ' Q.E.D.

2p
2p’




Now suppose that § satisfies the Nash inequality

2+4/v
2

Given ¢ € F_, and £ € ', set f = PYf. Then, by (3.10) and

(3.18) NE N < ACe(e.£) + snsudynen’? ¢ e L3 (m).

(3.11), one has that

d 2 _ ¥ -y _ 2 2
T llft 5 = 2&(e ft.e fc) < 2£(ft.fc) + I'(y) Ilftll2
and
d 2p _ _ ¥v.2p-1 =y _ P P 2 2 2p
——uftu2 = -2p&(e’f] e Tf ) § -28(fL.f7) + 18p°T(¥) nftu2p

for p € [2,»). Clearly the first of these implies that
2 .
(3.19) NE Ny < exp(F(¥)“t)usl,
At the same time, when combined with (3.18), the second one leads
to the differential inequality:
d 1

——Hf |} - ———"f I

< 1+4/v g~ 4/v
dt "t 2p t 2p

llft

(3.20) o o
+ p(9T(y)” + &6/p )llftll2

for p € [2,=).

The following lemma, which appears in [F-S] and whose proof
is repeated here for the sake of completeness, provides the key to
exploiting differential inequalities of the sort in (3.20).

(3.21) Lemma: Let w: [0,®)——(0,») be a continuous non-decreasing

function and suppose that u € Cl([0.°):(0.m)) satisfies

(p-2)/BpyBp
: e[t 1+pp
(3.22) u'(t) ¢ P[_;T?T ] u (t) + Apu(t), t € (0,=),
for some positive ¢, B, and N and some p € [2,®). Then, for each

p € (0.1]. u satisfies

1/
‘%35-] PP 1R /0Py () PA/P ¢ (0.m).

(3.23) u(t) ¢ - {
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A

Proof: Set v(t) = e "P%(t) and note that

(p-2) . 2
vi(t) € - —%i———ﬁ—ekp tv(t)1+pp.
pw(t)PP
Hence,
d -Bp (p-2),,.y~Bp ABPZt
ET[V(t) ] 2 ept w(t) e

and so, since w is non-decreasing,

2 t 2
e")‘BP tu(t)-ﬁp > EﬁW(t)—ﬁpJ‘ s(p_z)ekpp sds
0
But, for p € (0,1].

' 2
t 2 p-1ABp -
J s(p-2)eABp Sds 2 [t/ksz] J s(p 2)sr'sds
0 kBp2(1~p/p2)
t(P‘l) 2 2
2 —=—p—exp[ABp7t - pkBt]p[l - (1-p/p )]-
Noting that p[l - (1-p/p2)j 2 p/2 for all p € [2,w), we conclude

from the above that u satisfies (3.23). Q.E.D

We are now ready to complete our program of estimating

WE¥N, . . To this end, pick an f € L2(m)* witn ey = 1

Py = 2k for k € 2¥ , and define uk(t) = H?ff"p . Also define

k
wk(t) = max{s u(s): s € (0,t]}. By (3.19), wl(t) <

, Sset

exp(r(¢)2t). Moreover, by (3.20), satisfies (3.22) with ¢ =

Uk+1

1/A, B = 4/v. N = 9T(¥)? + 6, and w = w,. Hence. by (3.23). we

k

ep)\t/2

k
(22 ]1’2 g

see that wk+1(t)/wk(c) < /pep for any p €

(0.1]. Putting this together with our estimate on w we arrive

1 .

Iim —I/Bepkt

at the conclusion k_mwk(t:) { C(pe) . where C = C(B) €

(0.@) : and, after replacing p by p/9 and adjusting C accordingly,
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one easliy passes from here to

nB¥n “/4exp[(1+p)r(¢)2c + pét]

tMose $ C(A/pt)

for all p € (0,1] . Finally, this estimate is obviously unchanged
when ¥ is replaced by -y. Thus, since it is clear that §:¢ is the

s¥ 14
adjoint of Pt' we also have that IIPKIII_’2 <

C(A/pt)U/4exp[(1+p)r(¢)2t + pbt] for all p € (0.1] . Hence,
¥ 3 4 5¥

since HPtnlqm < HPt/2H1*2HPc/2"2ﬁo. we now have

(3.24)  wB¥u, . < c(a/pt)® Pexpl(14p)T(¥) %t + pbt]

for all p € (0,1], where the C in (3.24) is the square of the
earlier C.

(3.25) Theorem: Assume that (3.18) holds for some positive v, A,

and 6. Then P(t,x.dy) = p(t.x.y)m(dy) where, for each p € (0,1]
and all (t,x.y) € (0,2)xExE:

(3.26) p(t.x.*) ¢ C(A/pt)v/zeapte'n((l*P)t:x.')

(m-a.e.)
with C € (0,») depending only on v and
(3.27)  D(T:x.y) = sup{l¥(y) - ¥(x)] - Tr(¥)?: v € 5).

Proof: From (3.24) with ¢y = O we see that p(t,x,*) exists.
Moreover, since T'(y) = I'(~¢). (3.24) for general y € &m says that
2exp[spc = v(-) - w(x)] ¢ (1+0)TT(W?].

and clearly (3.26) follows from this. Q.E.D.

p(t.x, ) § C(A/pt)

(3.28) Corollary: Assume that (2.14) holds for some B € (0,») and

0 <¢pu v <o (or, equivalently, that (2.13) holds for some A €

(0,») and the same p and v). Then for all (t.x,y) € (0,*)xExE and
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each p € (0,1]:

K(pt) "/ 2e5P exp[-D((1+p)t:ix.y)] for t € (0.1]

plt.x.y) £ K(pt)—“/zeaptexp[-D((1+p)t.x.y)] for t € [1,»)
where K € (0,®2) depends only on B (or A), u, and v.

(3.29)

Proof: From (2.14) we have (cf. the proof that (2.3) implies

(2.2)) that
o B 2usu 4 ee(s.6), ¢ € (0.1]
(3.30)  wfn2 ¢
27 B 2unn? v ceen). coe [1.9).
2 ~b/2, .. 2
Hence, if 6 € (0,1]. then Hf"2 $ Bt Hfﬂl + te(f,f) for all t €

(0.1/6]). In particular, by taking

2/(v+2
¢ = [usa(u-v)nfuf/zz(f.f)] (v+2)

we conclude that there is a B' € (0,»), depending only on B, u,

and v, such that

_ —1-p/2
(3.31)  n£a2* YV ¢ B st e, eyuendC g wgn? ¢ 28 £(f.f).
2 1 1 vB
On the other hand, by taking t = 1/5 in (3.30), we see that Hf"g <
Ba“/zufuf + 671 e(s.6) ¢ B(1 + v/2)6" %0502 and therefore that

~1-p/2
4/u u/uv 2 4/v 2 26
neny’? < (B(1 + wr2)8)* Pusnduen?? oe wend » 22 £(f.£).
Combining this with (3.30), we conclude that
(3.32) ey’ ¢ Aé“/v-l[e(f.f) + oufng]ufu?’”. 5 € (0.1].

where A € (0,®) depends only on B, u, and v.
Finally, given t € (0,»), (3.29) follows from (3.32) with § =

1/(1Vt) and Theorem (3.25).

Q.E.D.
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N 4. The Discreée Time Case:

~

'E All our considerations thus far have applied to symmetric
Markov semigroups in continuous time for the simple reason that

E Dirichlet considerations are most natural in that context.

: However, it is often important to work with a discrete time

A parameter; and so in the present section we develop the

ES discrete-time analogs of the results in section 2).

§ Unfortunately. we do not know how to extend the ~esults of section

. 3) to this setting.

:: Throughout this section M(x.dvy) will denote an m-symmetric
transition probability on (E.#). Also, we will use If(x) to

7, denote If(y)H(x.dy) : and, for n 2 1, the transition function

ﬁ Qp(x,dz) and the operator EP are defined inductively by iteration.

- Note that NI =1 for all p € [1,®). Finally. set M(dxxdy)

i = Hz(x.dy)m(dx) and associate with I the Dirichlet form ¢g(f.f) =

% 1/2I(f(y) - £(x))2M(dxxdy).

i Obviously there is no "small time” in the discrete context

- and therefore we only seek an analog of Theorem (2.9).

. (4.1) Theorem: Let v € (0,») be given. If

R (4.2) ngudtd ¢ Az(f.f)ufu?’” when &(f.f) ¢ ufuf

% for some A € (0,®) and {f Wri, ., < B € (0.2), then there is a C €
(0.») depending only on v, A, and B such that
(4.3) L, § c/a”% 0y 1.

< Conversely, (4.3) implies that (4.2) holds for some A € (0,®)

E depending only on v and C.

-

:
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Proof: We begin by observing that

2. "Hfﬂ2

(4.4) E(E.£) = nEng 5

In particular,

(4.5) L(f.f) - &(mf.Of) = I(f(x) - m£(x))2m(dx) 2 O,

«

2 n.,2 n+l_. 2 n n

Hﬂfﬂ2 2 E[HU fu2 - o fu2] = Ez(u f.0°f).
1 1

and so

2
2

Now suppose that (4.2) holds and that WO

172 1/2 1/72

nrn < III]'IlI_’].|IIl'|I1_'w° < B :

1-2
and so, by (4.6), &(O"f.0%f) ¢ uu“fuf for n 2 Ny = [B] + 1.

2
2|

(4.6) g(rf.a%f) < WEENS/n, n 2 1.

1 =0 < B. Then

nasn

Hence, if f € Ll(m)+ with Ifll, = 1 and u

1 = then, by (4.2)

and (4.4)

2/v
- u

(4.7) u g (1 -
Next, choose N1 2 No so that (1 - B /A(n+1)) < (n/(n+1)) for

¥/2. Clearly, u, < C/nv/2 for 1 ¢ n ¢

Nl' Moreover, {f n 2 Nl and u, < C/nv/2. then either u, 4

C/(n+1)v/2 or C/(n+1)"’/2 < u, < C/nvlz. In the first case, since

v/2

/A)un. n 2 No.

2/v v/2

all n 2 Nl' and set C = BN

U < upeou g ¢ C/(n+1) "On the other hand, in the second

case, we apply (4.7) to obtain:

U, S [1 - (C/(n+1)”’2)2’”/A]u

< (n/(n+1))°"2%c/n%’2 ¢ cr(n+1)¥72.
Hence, by induction on n 2 Nl' we see that un < C/nv/2 for all
n > 1. Obviously. this {mplies that IIHnlll_’2 < C1/2/nv/4: and

therefore, by the usual duality argument, (4.3) follows.




To prove that (4.3) implies (4.2), we use (4.4) and (4.5) to

2 - WEW2 2 nd(f.f) and therefore, {f (4.3)

holds. that Nfii3 ¢ (c/(20)*/2)ufu + ne(£.£). n 2 1. The passage

conclude that HanH

from here to (4.2) is just the same sort of minimization procedure

as was used to get {(2.10) from (2.11). Q.E.D

As a typical application of Theorem (4.1), we present the

following. Take E = RN and suppose that I(x.dy) = w(x.y)dy where

N

7 is a symmetric measurable function on RNXR into [0,B] for some

B € (0,»). Assume, in addition, that 72(°.*) 2 Pp(*.%) almost

everywhere, where p is an even function in Ll(lRN)+ satisfying

(4.8) I(l - cos(E-y))p(y)dy 2 elE|% & € RN wien |g] < 1

for some positive a and e.

(4.8) Corollary: Referring to the preceding, there is a C €

(0,»), depending only on N, a, e, and B, such that ﬂn(x.-) 4

C/nN/a a.e. for all x € RN and n 2 1.

Proof: Note that
(2mMece.) 2 (2m " fax[(e(eey) - £ 20(v)ay
= 2f[[(1 - cos(e-vnIp(rIay]IF () 120
Hence, by (4.8),
(2r)Nugn? = nens = J HGIRE

2
l§ <R
1£(€) 1248 < aur"nen? + [(2v)N/2eRa]£(f.f)

[&[2R
for all R € (0,1];: and from here it is an easy step to (4.2) with
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-

v = 2N/a and an A € (0,») depending only v, e, and N. Since

g

HHquu { B , we can now apply Theorem (4.1) to get the required

conclusion.

Q.E.D.

2

»
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5. Assorted Applications:

We conclude this paper with an assortment of applications of
results from previous sections and with some remarks on natural
extensions of these results.

Most of these applications, like most of those already
discussed, exploit a relatively transparent comparison of
Dirichlet forms to yield an interesting comparison of the
associated semigroups. By way of counterpoint, the following
application of Theorem (2.1) exploits a relatively transparent
"multiplicative” property of Markov semigroups to establish an

interesting "mulctiplicative” property of the associated Dirichlet

spaces.
Let E(l) and 5(2) be two locally compact metric spaces
equipped with measures m, and my, . and with symmetric

transition probability functions P(l)(t.xl.°) and P(2)(t.x2.').
as in the first section. Let 8(1) and 8(2) be the
correspnding Dirichlet forms.

Clearly
(5.1) Ple.(x.x2). ) = PUD) ekt y)ep(2)(e.x2. 1)

is a transition probability function on (E(l)xE( )'QE E ).
(1) 7(2)
which is symmetric with respect to m = m,xm, . It is further
clear that P(t.(xl.x2).') tends weakly to & 1 2 as t tends
(x".x™)

to zero, and so (5.1) defines a transition function of the type we

have been considering. Let & be the corresponding Dirichlet
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form:; then it is easy to see that as Hilbert spaces (the inner
product on %(&) being (°+,°) + &(°.°*) . etc.)
(5.2) a(e) = a(e(1))es(e(?))

Now suppose that 8(1) and 8(2) each satisfy a Nash type
inequality (2.2) for some positive v, and vy - One may

naturally ask whether ¢ then satisfies (2.2) for some v

depending on v and v

1 2

It may seem that this question invites an approach using,
say, Holder's inequality or Minkowskii's inequality to take apart
tensor products directly in (2.2). We know of no such argument.
However, the equivalence of (2.2) and (2.3) provides an easy
positive answer to the question.

(5.4) Theorem: Let ¢ . (1), and £(2) pe related as above.

and suppose

(5.5) ufug“‘*"’i < A(i)[s(i)(f.f) + aiufug]ufu?/“i. feL?(m) .
for { = 1,2

Then with v = v, ot v, 6 = 51 + 52 and some A € (0,%),
depending only on A(I)VA(z)z

(5.6) wenstP g A[z(f.f) . 5uru§]uru4’“. f e L%(m @my)
Furthermore, provided v, and v, are the smallest values for
which (5.5) holds, v, ot v, is the smallest value of v for

which (5.6) holds.

Proof: Let (?ﬁl): t > 0} and {§£2): t > 0} be the

semigroups corresponding to 8(1) and 8(2) . By (5.5) and the
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R i i
second half of Theorem (2.1). uﬁg‘)ulqa ¢ B{1)gd e, v 72

A LA

1,2. Then., by Segal's lemma [S],

<
-

% (5.7) "§£1)@§£2)ulﬁm < B(1)3(2)e(51+52)‘/c(”1+”2)’2 :
f and so, by the first half of Theorem (2.1), we have (5.6). The
A optimality of v, * v, is easily seen by applying §£1)0§£2) to
§ the product f1®f2 where each fi is chosen with "finl = 1 and
.: Hﬁgi)finm very close to "ﬁgi)"lﬂm . Q.E.D.
. A particularly interesting case occurs when v > 2 1in (5.6).
'é Then Theorem (2.17) says that a Sobolev inequality holds for &.
% This provides an easy way to see that Sobolev inequalities hold
- for certain Dirichlet forms, and even to find the largest possible
E p (smallest possible v) for which the inequality holds.
@ For the simplest sort of example, take E(l) = [0.1] ., take
m, to be xdx , and define 8(1) by |
(5.8) e e gy = éf:lf’(x)lzxdx
for f € C:([O.l]) and then closing. Regarding f as a radial
.L' function on the unit disk in R2. one recognizes 8(1) as the
é restriction to radial functions of the Dirichlet form associated
with the Neumann heat kernel on the unit disk in Rz. 8(1)
5 therefore satisfies (5.5) with v, = 2 . Next take E(2) to be
3 the unit cube in RN-I. take my to be Lebesgue measure, and take
i &(2) to be the Dirichlet form associated with the Neumann heat

N
kernel on E(2). Then with E = E(I)XE(2) C R, and with ¢

8(1). 8(2) related as above, for any f € C:(E)..

e e et e et e T T ¥ 1 T B i A P




1 1 1
(5.9) §(£.£) = 3 xldxlf dx2~--I axM |ve(x) |2
0 -1 -1

Then clearly Theorem (5.4) applies with v, = 2 vy =
N-1 , and so & satisfies (5.6) with v = N+1 , and does not

satisfy (5.6) for any smaller value of v . Therefore when N > 2

§ satisfies a Sobolev inequality

(5.10) ufui < A'[s(f.f) + 5ufu§]

with 1/p = 1/2 - 1/N+1 ; (5.10) fails for any larger value of p.
(The L? norms are computed with respect to xldx .} Of course, if
we remove the factor x1 from the integrals, (5.10) then is
satisfied with 1/p = 1/2 - 1/N . Including the degenerate weight
x1 in our-integrals raises the ‘effective dimension v by  -one
from N to N+l

The same result obtains in less special situations. Let X

N Let op

be a smooth, compact N-1 dimensional submanifold of R
be a weight function on RN satisfying, for some XA > O , and all
b

(5.11) Adist(x.M)A1) < p(x) < N l(dist(x.M)Al)

By standard results in, for example, Fukushima's book [F]: the
closure of

(5.12) e(f.f) = Julvf(x)lzp(x)dv.

defined first for f € C:(RN) . is a Dirichlet form. Employing a
simple partitioning argument, familiar comparison arguments, and

otherwise only increasing the complexity of notation; the argument
above yields the following result: For some A" , 6 € (0,») , &

satisfies the Sobolev inequality (5.10) with 1/p = 1/2 - 1/N+1
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Before leaving this subject, we briefly look at the limiting
case v = 2. Although p(v) = 2v/(v-2) tends to infinity as v
decreases to 2, it is easy to see that when v = 2 , €& does not
in general control the sup norm. There is however a natural
definiction of the B.M.O. norm in the general Dirichlet form
setting. In terms of this B.M.O. norm, one easily obtains a
strong limiting case of the Sobolev inequality (5.10) holding

whenever v = 2 holds in (5.6).

Let & be a fixed Dirichlet form, with (?t: t > 0} being

the associated semigroup on L2(m). Using the spectral theorem and

2
the integral e_x = w-1/2jmg%e_A /4te—tt1/2. one sees that with
0

Q, sgiven by 5: = v-l/zjmi§[$ o ]euss—l/2 . {ati t > 0} 1is a
0 (s“74)
172

Markov semigroup on Lz(m) generated by ~(A) , where -A is
the generator of (ﬁt: t > 0}. The B.M.O. norm naturally

associated to & {s given by

-— - Sup -— _ -
(5.13) ey y o = t)O[thlf Qtflnm]

(This definition was used by Stroock [St] who established a
generalization of the John-Nirenberg inequality; proving that when
m(E) ¢ » and (6:: t > 0} 1is a Feller semigroup (so that the
corresponding Markov process can be constructed with right
continuous paths [W]), there exists an a > O , and a B < @ so

that for all f with "f”B.M,O. {( =

(5.14) JE[exp[af/HfHB.M.o.]]dm < B

(Note that {Q t > 0} 1is a Feller semigroup whenever

.
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{?t: t > O} is a Feller semigroup.) This exponential
integrability is what supports the assertion that the B.M.O. norm
is a strong substitute for the sup norm. For further discussion of

such results, see [D-M].

Now suppose & satisfies (5.6) with v = 2 . Then "ﬁtulem
¢ C/t . The integral representation for 5: shows that then
uétnlqa [4 C/t2 , and so by interpolation between this and Hatﬂmaw
=1, udtnzqm { C/t . (C is of course changing from line to

line.) Now suppose that f € 5(8); Then t——adtf is strongly

differentiable and

t
(5.15) a.f - f = -I ds[6 Xl’zf]
t ) 0 s
This gives the estimate IQ.f - £, ¢ :uxllzfuz = te(£.£)12 ana

consequently uét(atf - f)HE ¢ C&(f,.f)., so that ufug M.0. §

Cé(f.f). This discussion is summarized in the following result:

(5.16) Theorem: Let & be a Dirichlet form such that n?tulqm <

C/t for all t € (0,1). Then there is a C' < @ , depending only

2
B.M.0. §

m{E) < » and {ﬁt: t > 0} 1is a Feller semigroup, there is an «a

on C , so that Ifll C'é(f,f) : and consequently, when

> 0O, and a B { ® sog that

(5.17) IE[exp[af/s(f.f)llzj]dm < B

for all f € D(¢&)

(5.18) Remark: It is not clear to us whether the preceding result

has a converse.

We next turn to an application of the results in section 4).
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Take E C ZN equipped with the usual metric and a measure m
bounded above and below by positve multiples of counting measure.
Suppose that E 1is everywhere connected to infinity, by which we
mean that for each x € E , there is an infinite, one sided. loop
free chain Ex in E of nearest neighbors starting at x . (One
may always erase loops if need be.) Now let @I(x,°) be an
m-symmetric transition function on E, define w(x.y) =
O(x.{y})/m({y}). and assume that

(5.19) 1/u 2 w(x.y) 2 u

for some p € (0,1] and all x and y 1in E which are nearest
neighbors. One naturally feels that the associated random walk
must spread out at least as fast as a simple random walk on the
half line with transition probabilities p , since starting at x,
it can always spread out along Ex . That is, one expects the

172

return probabilities Hn(x.(x}) to decay like C/n The

results of section 4) permit an easy proof of this.

{5.20) Theorem: Let E C ZN ., I and m be given as in the

preceeding discussion. Then there is a C <( » depending only on

m and p so that

(5.21) Hn(x.{x}) [4 C/nl/2 for all x € E and n € Z2".
Pruof: Let & denote the Dirichlet form associated with @2
as in section 4). Given x € E , let Ex be an infinite, loop

free, one sided chain of nearest neighbors in E starting at x

Let 8x be the Dirichlet form on Lz(m) given by
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(5.22) eee) =) (f(v) - £z (y. (z))m(2)
y.zeEx

Clearly &(X)(£.£) ¢ &(£.£) for all £ , so that 1f A(X)
£ (x)

>

denotes the self adjoint operator associated with ., as

is with & , then, for any A > O:

1 1

(5.23) (A + 27 ¢ a(¥) 4 T
Letting GA and G{x) denote the kernels of the ahove operators
(with respect to m), (5.23) says in particular that

(5.24) 6, (x.x) < 6{®)(x.x)

Now identify Ex with the natural numbers & 1in the obvious way

so that x is identified with O. By restriction and this

identification, we may regard m = mlE .as a measure on ¥ and
X

8(x) as a Dirichlet form on the L2—space over N relative to this
measure. Next, define m, on ¥ to be the measure which assigns

mass 1 to each element of z* and mass 2 to 0, and define 8w by
2.2
(5.25) e (E.£) =) (£(1) - £(NZI2(4. {k})m (k) .
J.kexN
where Hw(O.(l)) = 1 and H'(n.(n+1}) = Hw(n+1.{n}) = 1/2 for all

n € 2¥. This is the Dirichlet form of the simple random walk on

N reflected at O . Since the simple random walk transition

function satisfies H:(k.(k}) SC/n1/2. n21, for some C > O

and all k € ¥ (this well known fact is also a consequence of

Lemma (4.9)). application of Theorem (4.1) yields

(5.26) g S ¢ AL (£.6)nen’

2 1

L%(m,) Li(m,)

But since both m and m as well as & and
w X w
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bounded above and below by positive multiples of each other,

(5.26) also holds when m and aw are replaced by LW and

£ (%) -ea(¥)
, respectively. Hence, by Theorem (2.1), lle qu“ <
c/et’2 ;. and so w(E) e TN < cjnﬂf(e‘“‘:"z) -
o
A—1/2C. In particular, G{x)(x.x) < A—I/2C . which means, in

-172

turn, that Gx(x.x) < A C. We are now finished with 8(x) .

and almost with the proof. By the Schwarz inequality, Gk(x.y) <

(G, (x.%)G, (v.¥)) 172 . and so u(X + )7 hu < A12¢ | Finally

2 1 1
2 £)

]9

1

NENS = (£,(A + A)(A + A) 'f) = A(£.(A + A)™

-1/2,., .2
1
and minimizinng in A leads to HfIF g ¢ Ag(e.eynent
L™(m) L (m)
some A € (0,»). Thus Theorem (4.1) gives us (5.21).

£) + (£f.A(A + A)

¢ A M2cnen2 « a7 leqsa ey

for

Q.E.D.

Next we turn to off diagonal bounds énd applications of
section 3. The trick to applying the results of section 3 {s to
find, for given x, y, and t , a ¢ which maximizes, or nearly
maximizes, Y(x) - ¢(y) - tI'(\p)2 . Hence, in situations where one
can guess the correct behavior of the transition function -- and
can therefore make a good choice for ¥ -- Theorem (3.25) is a
good source of pointwise bounds.

In our next example, E s the integers, and m {s counting
measure. Consider a random walk on the integers given as follows:

Let p:ZxZ-R be a non-negative, symmetric function. Suppose that

p is dominated by a non-negative even function p:Z-R which
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posseses a moment generating function M(A) . That is, suppose

.’l‘l"#l' :

that for some € > 0 and some B { o ,

(5.27)  M(A) = ) o MrlSin) ¢ B ¢ © forall a e [0.e)
\ n

2

: Then in particular, if we write (dk) M(A)lk =0 °*

. (5.28) 2 p(m.m+n)n2 < 02 for all m € Z

n€zZ
. It is easy to see that

- (5.29) £(£.£) = 3) eZ(f(m+n) - £(m))%p(m.m*n)
m,n

is the Dirichlet form corresponding to a uniquely determined
- family P(t.m,+) of probability transition functions with
(5.30) P(t,m,{m+n}) = p(m.,m+n)t + o(t)

For this reason, p(°*.,*) 1is called a jump rate function.

In general it is very difficult to pass from the
infinitessimal description (5.30) of the transition function to a
useful closed form formula for it. However, just as in section 2
. with the truncated Cauchy processs, Central Limit Theorem

considerations suggest that, at least when (5.28) {s fairly sharp,
. and in the Gaussian space-time region where t 1is much larger
2

2
than n, P(t,m,{m+n}) {s very nearly (2v02t)-1/2e-n /207t . We

< will now prove that there is in fact a pointwise upper bound of
this form in the appropriate space time region.

First pick some large N and some a # O , and define the
T even function ¢N.a by ¢N'a(n) = aN for n { N, ¢N.a(n) = 2aN -
an for n € [N,2N]. and ¥y a(n) = 0 for n 2 2N. Clearly,

~

¢N.a €3, - Next observe that, writing ¢ for

wN.a '
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r(e¢,e¢)((m}) = %2 €Z.(e¢(m) - e¢(m+n))2p(m.m+n)
n
n
2¢(m) 1 al|n],2>
< 5 1 -
S - et

. _ a3 .
Then, by Taylor's theorem, if K = akn(x)lk=e/2.

- 2 122 . 1..., 3
(5.31) F(¥y o) $ 3a“0” + 3N (ez2) |al
whenever
(5.32) la] ¢ e/4

To use this estimate in Theorem (3.25) we need to know that
§ satisfies a Nash type inequality. This will follow easily from
a comparison argument if we impose .
(5.33) p(n,n+1)Ap(n,n-1) 2 up > O for all n
(5.34) Theorem: Referring to the preceding, there is a C € (0.,«),
depending only on p, such that for all p and 6 from (0.1)
(5.35) P(t.m.{n}) ¢ C(pt) /2

for all (t.m,n) €(0,®)xZxZ satisfying

exp[-(l-é)|n-m|2/2(1+p)02t]

(5.36) £ 2 [(x/ba4)V(4/ea2)]ln - m]
Proof: By the preceding,
D(t;m,n) 2a(m - n) - t(%a2a2 + gla|3)
so long as |a| ¢ e/4. 1In particular, if t 2 —Eiiln - m|. then we
e“o
can take a = = ; % and thereby obtain
ot

2
D(t:m.n) 2 lﬂ_%_ﬂl_[l - ELEZ:JRL]_
207t ot

Hence, if in addition, t 2 -Ezln - m|. then we get
o

D(t:m,n) > (1 - &)|n - m|2/2(1 + p)azt.
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At the same time, after comparing & to the Dirichlet form
corresponding to the standard random walk on Z, one sees that
6 7 4
NEny < Es(f.f)lfnl.

Hence, by Theorem (3.25), we arrive at (5.35). Q.E.D

Note that since p and 6§ are arbitrary elements of (0,1), we
get close to what the Central Limit Theorem suggests is the best
possible rate of Gaussian decay -- though of course the factors
out front diverge as p tends to iero.

We give one final example of an interesting situation where
we can give a good estimate for the quantity D(T:x.y) defined in
(3.26). Namely. consider the case when E = RN equipped with
Lebesgue measure. Let {Vl. ces .Vd} c C:(RN;RN) be a collection
of vector fields on RN and let & be the quadratic form on L2(RN)

obtained by closing

d

) f IVeol2ax . o e oY)
k=1"RN
in L2(RN). Again applying standard results from [F], one sees

(5.40) E(e.v)

that this closure exists and that the resulting ¢ s the
Dirichlet form associated with the unique transition probability

function P(t.x,*) for which the corresponding Markov semigroup

t
{Pt: t > 0} satisfies Pt¢ = ¢ + I Pstds, t > 0, for all ¢ €
0

d
C:(RN). where L = —z V:V and we think of Vk as the directional
k=1

k




N
derivative operator z viax . (By V: we mean the formal adjoint
i
i=1

d
of the Vk as a differential operator.) Set a(x) = 2 Vk(x)@Vk(x)
' k=1

and note that an equivalent expression for L = v<(av). 1In

particular, when a(+) 2 eI for some € > O, it is well known that

P(t.x.,dy) = p(t.x,y)dy where (t.x,y) € (0.@)XRNXRN—%p(t.x.y) is a

smooth function which is bounded above and below in terms of
appropriate heat kernels (cf. [F-S] for a recent treatment of this

sort of estimate). Moreover, it is known that, in this

lim
ti0

d(x.y) denotes the Riemannian distance between x and y computed

non-degenerate situation, tlog(p(t.x.y)) = -d(x.y)z/é. where
with respect to the metric determined by a on RN (cf. [V]). These
considerations make it clear that we should examine the relation
between d(x.,y) and the quantity D(T:x.,y) introduced in section 3).
In order to make it possible to have our discussion cover
cases in which a is allowed to degenerate, we begin by giving an
alternate description of d(x,y). Namely, define H =Hd to be the
Hilbert space of h € C([O.ﬂ);md) satisfying h(0) 0 and Ihit,, =
. h

Y 9 g <®(h=8h). Given h € H, let Y'(-.x) €
LT([0.=):R")

d
t
C([0.®):R") be defined by YP(t.x) = x + } I hk(s)Vk(Yh(s,x))ds. ¢
0
k=1
h € H and Y?(1.x) = y}.

2 0. Finally, define d{x,v) = inf{HhHH:

It is then quite easy to show that, in the non-degenerate case,

d(x.y) is the Riemannian distance between x and y determined by
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the metric a. More generally, one can show that d(x.y) depends on
the Vk's only through a.

We next observe that, from (3.6):

d
(3 2 ]ar. v e ).

r(v.v)(dy) =
k=1
2 d 2 @ N
In particular, I'(y)® =1 E(Vk¢) N,., v € CO(R ): and so
k=1
D(T:x.y) 2 sup{lv(y) - w(x)] - Tr(¥)%: v € CO(R")}. Hence.
(5.41) D(T:x.y) 2 D(x.y)2/ar,

where D(x.v)? = 4sup{|v(y) - ¥(x)| - T(¥)?: y € cC(rY)} =
sup{l¥(y) - ¥(x)|%: y € CS(R") and I'(¥) < 1}. On the other hand,
since, by Schwarz's inequality, Iw(Yh(l.x) - w(x)]| ¢ T(v)lhily, we
see that: .

(5.42) D(x.y) € d(x.y).

In order to complete our program, we wi}l show that the opposite
inequality holds when d(x.+) is continuous at y.

To begin with, suppose that a(°*) 2 el for some e > 0. It is
then easy to see that d(x.y) ¢ (1/e)]|y - x|. Next, for given
x°.y® € RN and ¢ > 0, define v, (y) = no[jpa(f)d(xo,y—f)df]. where
poe T wich [o(£)dE = 1. b (E) = 0 Vp(E/0). and n € Co(RY)"

has the properties that lin'll, { 1 and n(u) = u for u €
1A%

[O.d(xo.yo) + 1]. Since, for any 6 € Sd-l. |d(x°.e ey) -
:ve d
d(xo.y)l $ d(e y.y) £ t, where V9 = b) eka. it i{s easy to see
k=1
that F(¢a) {1+ Co, 0 € (0,1], for some C € (0,«). Hence,
114
D(xo.yo) 2 ET% |¢a(y°) - na(xo)l = d(xo.yo). In other words, when

a(+) 2 el, equality holds in (5.42).
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(5.43) Lemma: If d(x,°) is continuous at y, then d(x,y) = D(x.y).
Proof: Given e > 0, define de and De relative to the vector
; fields (V,.,....V .51/26 .....51/26 }. Then the corresponding a
1 d x4 XN €

Cal

= a + el; and so, by the preceding, d6 = De' In addition, it is

clear that D, { D. Finally. for each ¢ > 0, choose h = (ke.ee) €
¥ h
i

3

3 Hd+N = deHN so that Y “(1,x) = y and "h&"Hd+N = de(x.y). and let
S k, k, (k .0)

Y, = Y "(1,x) where Y "(*.x) =Y (+.x). Then, d(x.ye) <
. "ke"H < "he"H = De(x.y) { D(x.y). At the same time, since

d d+N
e | { d(x.y). y_—Yy as €l0; and so, by continuity,
e HN €

- o dxey )—=d(x0y). Q.E.D.
g (5.44) Remark: The identification of d with D in the
- non-degenerate case was known to Davies [D]. In addition, Davies

suggested that the two are the same in greater generatlity, but
did not provide a proof.

(2.45) Theorem: Suppose that either & satisfies (1.2) or

{Pt: t > 0} satifies (1.3) for some v € (0,»), § € [0,1], and A or

B from (O,»). Then, P(t,x,dy) = p(t.x,y)dy where (t.x,y) €
(O.w)xRNxRN-—ﬂp(t.x.y) € [0,») is measurable and satisfies
"/2)exp[-D(x.y)%/4(14p)t] )

for all (t,x) € (O.w)leN and almost every y € RN. where Cp € (0,w)

(5.46) plt.x.v) ¢ (Cpeac/t

depends only on v, p. and A or B. In particular, {f d(x.°*) is

continuous, then D(x,y) in (5.46) can be replaced by d(x.y).

2 (5.47) Remark: Using results of various authors about subelliptic
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operators, one can show that the preceding theorem applies to a
large class of degenerate examples. For instance, if the vector

fields (Vl.....Vd} satisfy Hormander's condition in a sufficiently

P IP i

uniform way, then one can check not only that & satisfies (1.2)
but also that the associated p(t.x,y) is smooth and the
corresponding d{(x,+) is Holder continuous. A closer examination
of this situation will be the topic of a forthcoming article

[(K~S]. in which complementary lower bounds on p(t.x,y) will be

8 obtained when t € [1,®).

v 1
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